
Coroutines

Lieven de Cock
www.codeblocks.org

 2

What we want

 3

What we got

 4

Myths

● Is NOT related to:
– Multi threading
– Asynchronous programming

● It can be used in those areas, like it can be used in other
areas

 5

Concurrency versus Parallelism

● Processes
● Threads
● Coroutines

● A system is said to be concurrent if it can
support two or more actions in progress
at the same time. A system is said to be
parallel if it can support two or more
actions executing simultaneously

 6

Function / Routine

Function Coroutine

starts starts

ends ends

suspends

resumes

Function Coroutine

starts starts

ends ends

suspends

resumes

 7

Flow

● Returns to the (same) caller
● Same thread (unless ….)

 8

coroutine

● auto foo(…) { … }
– Is a coroutine when the body contains either:

● co_return
● co_yield
● co_await

– From that moment the compiler treats it as a coroutine and the
magic happens

 9

2 sides to the story

● The compiler facing side
● The user facing side

 10

Radio Station

● At set-up/construction:
– Type of music
– How many songs

● A radio station / show emerges, which plays songs
● Modeled by a coroutine

– Yields a new song and suspends
– After the user listened to the song, it gets resumed (aka press

next)

 11

Song database

const int Songs{4};

const std::array<std::string, Songs> electronic
{
 "Front 242 -> No Shuffle",
 "The Neon Judgement -> Tomorrow in the papers",
 "Orbital -> Chime",
 "Underworld -> Born Slippy"
};

const std::array<std::string, Songs> rap
{
 "Public Enemy -> Fight The Power",
 "Ice Cube -> It was a good day",
 "Run DMC -> Walk Thiw Way",
 "Beastie Boys -> Sabotage"
};

 12

As a regular function

void radioStation(int style, int songs)
{
 std::default_random_engine rng;
 std::uniform_int_distribution<int> track(0, Songs - 1);

 for (int i = 0; i < songs; ++i)
 {
 std::cout << (style ? electronic[track(rng)] : rap[track(rng)]) << std::endl;
 }
}● We get all the songs at the same time, all or nothing
● At the stream out spot we would like to return a song, and later on

continue where we left of and provide the next song

 13

The interface towards the user

● Create the coroutine → results in some
– Coroutine Interface
– Coroutine api
– Coroutine remote control
– …. whatever you want to call it
– …. something we can further interact with

● Ask for the next song and get it
● Check if there are more songs
● Stop / clean up/ time to go home

This interface sounds
more like an object,
rather than a function.

So a function
(coroutine) needs to
result in this “object”.

This interface sounds
more like an object,
rather than a function.

So a function
(coroutine) needs to
result in this “object”.

 14

The function (coroutine has state)

● Let’s assume the music database is a constant global container
● Further (dynamic) state:

– The type of music
– The number of songs to play
– The index in the list of songs (where are we, what’s next, …)

● When suspended, this needs to be stored away
● When resumed, this needs to be restored
● Stack less (versus stack full) coroutines

– The stack frame is stored on the heap by the coroutine mechanism
– Which as such contains the state described above

 15

Stack frame

● When a function is called some stuff happens
– Put the return address on the stack
– Put the function call arguments on the stack
– Inside the function : local variables are put on the stack

● When the function returns
– All the above is cleaned up

● The caller continues in its stack frame, and the callee’s stack
stuff is gone, as if it was never there

 16

Stack Frame

● We can’t get rid of the stack frame the moment the co-routine
yields in the middle

● We need to resume where we left of
● ===> stack frame needs to be restored at that time
● This means:

– Stack frame needs to be stored somewhere safe (typically on the
heap)

– It needs to be cleaned up at the correct time
● This is the programmers responsibility !

 17

Stack Frame => coroutine handle

● Stack frame gets put in some allocated memory
● We get a pointer/handle to it

– Which we need to hold on to
– Destroy at the appropriate time

● So at some point during the construction of the co-routine we will get this
handle from the eco-system

– We will come back to this later on

 18

As a couritine

RadioStation radioStation(int style, int songs)
{
 std::default_random_engine rng;
 std::uniform_int_distribution<int> track(0, Songs - 1);

 for (int i = 0; i < songs; ++i)
 {
 co_yield(style ? electronic[track(rng)] : rap[track(rng)]);
 }
}
● Spot the 2 differences …

– co_yield
– Return Value → RadioStation ===> ‘that coroutine object’

 19

RadioStation object : user
perspective
● Create it → constructor → the user is NOT directly calling it
● Destroy it → destructor
● Are we done ? → done()
● Next song → next()

– Obviously not to be called when we are done
– Coroutine resumes, we get the next song

and the coroutine suspends
● Eager/Lazy

– When created, do we get immediately a song
● Yes : Eager
● No : Lazy

We go for lazy, we
consider the creation,
like plugging the radio
into the power socket,
we don’t turn it on yet
(aka play song), so we
always explicitly ask for
the (first/next) song

We go for lazy, we
consider the creation,
like plugging the radio
into the power socket,
we don’t turn it on yet
(aka play song), so we
always explicitly ask for
the (first/next) song

 20

RadioStation object : user
perspective
● next and done ==> nextSong()

– Returns true : there is more
– Returns false : it’s done

● So after resumption we only get signalled, if there was
something more

● So need to explicitly fetch our new song

 21

User perspective : looks like

int main()
{
 auto radio = radioStation(0, 7);

 while (radio.nextSong())
 {
 std::cout << radio.value() << std::endl;
 }
 return 0;
}

 22

Compiler perspective

● Needs to store (computed/return) values
● Needs some configuration:

– Suspend at startup (eager/lazy)
– Suspend at the end
– What to do if an exception occurs
– Create the “return object”, aka the “api”, aka our RadioStation object

● When it creates this object it needs to pass in the coroutine handle → constructor argument

● All this is done via the “promise_type”, aka an object (eg. a struct) which adheres
to the promise_type concept, it lives inside the coroutine handle → coroutine
handle is templatized on this promise_type

● promise_type ==> needs to provide certain methods, not all possible methods of
the concept

● Has nothing to do with std::promise

 23

promise_type : startup : suspend ?

● auto initial_suspend()
– Yes

– No

auto initial_suspend()

{

 return std::suspend_always{};

}

auto initial_suspend()

{

 return std::suspend_never{};

}

 24

promise_type : at end : suspend ?

● auto final_suspend()
– Yes

– No

auto final_suspend()

{

 return std::suspend_always{};

}

auto final_suspend()

{

 return std::suspend_never{};

}

 25

promise_type : at exception ?

● void unhandled_exception()

● void unhandled_exception() noexcept

{

 std::terminate();

}

 26

promise_type : current state of
knowledge

 auto initial_suspend()

 {

 return std::suspend_always{};

 }

 void unhandled_exception()

 {

 std::terminate();

 }

 auto final_suspend() noexcept

 {

 return std::suspend_always{};

 }

 27

promise_type : store value

● When the coroutine GENERATES
values (co_yield or co_return), it
needs to be able to store them
somewhere for the user later on to
retrieve it ==> in the promise_type

● And when this value is provided →
suspend : yes/no ?

● auto yield_value(const T& value)

 28

promise_type : store value

auto yield_value(const std::string& valueIn)

{

 value = valueIn;

 return std::suspend_always{};

}

std::string value;

 29

promise_type : current state of
knowledge

 auto initial_suspend()
 {
 return std::suspend_always{};
 }

 void unhandled_exception()
 {
 std::terminate();
 }

 auto final_suspend() noexcept
 {
 return std::suspend_always{};
 }

 auto yield_value(const std::string& valueIn)
 {
 value = valueIn;
 return std::suspend_always{};
 }

 std::string value;

 30

promise_type : still MISSING

● auto get_return_object()
– We will come back to this shortly

 31

Hierarchy

● promise_type
– Is stored in the coroutine HANDLE

● Handle
– Is stored in the ‘return object/api’ aka

RadioStation
● The return object gets the handle at

constructor (so it does not create it),
and then owns it and (might need) to
destroy it

● Image above : (c) Timur Doumler

 32

Handle

● Templatized on the promise_type
– std::coroutine_handle<promise_type>

● Provides methods to interact with:
– resume()
– done()
– destroy()
– Is there (still) a handle → if(handle)
– promise()

 33

RadioStation : return object

class [[nodiscard]] RadioStation
{
public:
 struct promise_type;
 using CoroHandle = std::coroutine_handle<promise_type>;

 RadioStation(auto handle) :
 mHandle{handle}
 {
 }

 ~RadioStation()
 {
 if (mHandle)
 {
 mHandle.destroy();
 }
 }

 // …. more ...
private:
 CoroHandle mHandle;
};

 34

RadioStation : done or do next

bool nextSong() const /// you could call it: resume()
{
 if (!mHandle || mHandle.done())
 {
 return false;
 }
 mHandle.resume();
 return !mHandle.done();
}

 35

RadioStation : done or do next

bool nextSong() const
{
 return mHandle ?
 (mHandle.resume(), !mHandle.done())
 : false;
}

 36

RadioStation : done or do next

● Bool return value
● True : there is more
● False : nothing left to do, don’t call us anymore, it

was nice meeting you

 37

RadioStation : get the value

std::string value() const
{
 return mHandle.promise().value;
}

 38

promise_type : get_return_object

● auto get_return_object()
– Called by the compiler to create the return object
– Needs to accept at constructor time the coroutine handle
– And whatever other constructor arguments we came up with

● Multiple steps

1) Create the promise_type

2) Create the coroutine handle

3) Create the real return object (Eg. RadioStation)

4) And return it

 39

promise_type : get_return_object

● Step 1 and Step 2 can be combined
● std::coroutine_handle<promise_type>::from_promise(*this)

auto get_return_object()

{

 return RadioStation{CoroHandle::from_promise(*this)};

}

 40

Putting it all together :
RadioStation class

class [[nodiscard]] RadioStation
{
public:
 struct promise_type;
 using CoroHandle = std::coroutine_handle<promise_type>;

 RadioStation(auto handle) :
 mHandle{handle}
 {
 }

 ~RadioStation()
 {
 if (mHandle)
 {
 mHandle.destroy();
 }
 }

 RadioStation(const RadioStation&) = delete;
 RadioStation& operator=(const RadioStation&) = delete;

 bool nextSong() const
 {
 if (!mHandle || mHandle.done())
 {
 return false; // we are done
 }
 mHandle.resume();
 return !mHandle.done();
 }

 std::string value() const
 {
 return mHandle.promise().value();
 }

private:
 CoroHandle mHandle;
};

 41

Putting it all together : promise_type

struct RadioStation::promise_type
{
 auto get_return_object()
 {
 return RadioStation{CoroHandle::from_promise(*this)};
 }

 auto initial_suspend()
 {
 return std::suspend_always{};
 }

 void unhandled_exception()
 {
 std::terminate();
 }

 auto yield_value(const std::string& valueIn)
 {
 value = valueIn;
 return std::suspend_always{};
 }

 auto final_suspend() noexcept
 {
 return std::suspend_always{};
 }

 std::string value;
};

 42

Putting it all together : use it

RadioStation radioStation(int style, int songs)

{

 std::default_random_engine rng;

 std::uniform_int_distribution<int> track(0, Songs - 1);

 for (int i = 0; i < songs; ++i)

 {

 co_yield(style ? electronic[track(rng)] :
rap[track(rng)]);

 }

};

int main()

{

 auto radio = radioStation(0, 7);

 while (radio.nextSong())

 {

 std::cout << radio.value() <<
std::endl;

 }

 return 0;

}

 43

Name dropping

● We have a GENERATOR, generating std::string’s
● C++23 : std::generator
std::generator<char> letters(char first)
{
 for (;; co_yield first++);
}

int main()
{
 for (const char ch : letters('a') | std::views::take(26))
 {
 std::cout << ch << ' ';
 }
 std::cout << '\n';
};

 44

A co-routine which does not
yield/return anything

● So the co-routine does some work on each resumption
● Might never stop
● co_await

● Stupid example: 2 – players – pinball
– The caller is 1 player (I)
– The co-routine is the other player (You)
– We each take turns, we collaboratively work on the shared pinball machine
– We want to win, so we will make the co-routine loose after N turns, aka the co-routine

will be done

 45

A co-routine which does not
yield/return anything
● The interface/api:

– Resume method, let’s call it play()
– No need for a get value method, since it returns/yields nothing
– We configure N (turns) by specifying an integer to the co-

routine invocation

 46

Putting it all together : use it

Pinball pinball(int turns)

{

 for (int i = 0; i < turns; ++i)

 {

 std::cout << “Coro’s turn to play.” << std::endl;

 co_await std::suspend_always{};

 }

 std::cout << “Coro looses.” << std::endl;

};

int main()

{

 auto pball = pinball(4);

 while (pball.play())

 {

 std::cout << “My turn to play.” <<
std::endl;

 }

 return 0;

}

 47

promise_type

● There’s no need to store anything
– So no member needed
– No yield_value() needed

● We do need to implement another method in the
promise_type: return_void
– Nothing special we want to do here → empty implementation

void return_void() {}

 48

Putting it all together : promise_type

struct Pinball::promise_type
{
 auto get_return_object()
 {
 return Pinball{CoroHandle::from_promise(*this)};
 }
 auto initial_suspend()
 {
 return std::suspend_always{};
 }
 void unhandled_exception()
 {
 std::terminate();
 }
 void return_void()
 {
 }
 auto final_suspend() noexcept
 {
 return std::suspend_always{};
 }
};

 49

Putting it all together : Pinball
class

class [[nodiscard]] Pinball
{
public:
 struct promise_type;
 using CoroHandle = std::coroutine_handle<promise_type>;

 Pinball(auto handle) :
 mHandle{handle}
 {
 }

 ~Pinball()
 {
 if (mHandle)
 {
 mHandle.destroy();
 }
 }

 Pinball(const Pinball&) = delete;
 Pinball& operator=(const Pinball&) = delete;

 bool play() const
 {
 if (!mHandle || mHandle.done())
 {
 return false; // we are done
 }
 mHandle.resume();
 return !mHandle.done();
 }

private:
 CoroHandle mHandle;
};

 50

A co-routine which only returns
something at the end, when it’s done

● So the co-routine does some work on each resumption
● And at the very end the outcome is ready and returned
● co_await , co_return

● Stupid example: calculating the average of a very large set of values
– Per resumption the co-routine process a certain amount of the data
– After several resumptions all the work is done
– And the result is available and can be returned

 51

A co-routine which only returns
something at the end, when it’s done
● The interface/api:

– Resume method, let’s call it calculate()
– Again need for a get value method, to retrieve the final

outcome, let’s call it getResult()

 52

Putting it all together : use it

Average average(const std::vector<int>& numbers)

{

 int sum{};

 for (const auto& number : numbers)

 {

 std::cout << " Number crunching the next value."
<< std::endl;

 sum += number;

 co_await std::suspend_always{};

 }

 std::cout << " Finally, all calculated." << std::endl;

 co_return sum / numbers.size();

};

int main()

{

 const std::vector<int> numbers{100, 200, 100, 200, 100,
200, 100, 200};

 auto aver = average(numbers);

 while (aver.calculate())

 {

 std::cout << "More calculations needed." << std::endl;

 }

 std::cout << "Average : " << aver.getResult() << std::endl;

 return 0;

}

 53

promise_type

● Again need to store : the end value
● We do need for that to implement another method in the

promise_type to allow to store the value: return_value
● promise_type as such again has a member variable, to

be filled in during that return_value(…) call

 54

Putting it all together : promise_type

struct Average::promise_type
{
 auto get_return_object()
 {
 return Average{CoroHandle::from_promise(*this)};
 }

 auto initial_suspend()
 {
 return std::suspend_always{};
 }

 void unhandled_exception()
 {
 std::terminate();
 }

 void return_value(const int& valueIn)
 {
 value = valueIn;
 }

 auto final_suspend() noexcept
 {
 return std::suspend_always{};
 }

 int value;
};

 55

Putting it all together : Average
class

class [[nodiscard]] Average
{
public:
 struct promise_type;
 using CoroHandle = std::coroutine_handle<promise_type>;

 Average(auto handle) :
 mHandle{handle}
 {
 }

 ~Average()
 {
 if (mHandle)
 {
 mHandle.destroy();
 }
 }

 Average(const Average&) = delete;
 Average& operator=(const Average&) = delete;

 bool calculate() const
 {
 if (!mHandle || mHandle.done())
 {
 return false; // we are done
 }
 mHandle.resume();
 return !mHandle.done();
 }

 int getResult() const
 {
 return mHandle.promise().value();
 }

private:
 CoroHandle mHandle;
};

 56

Wait a minute

● Awaitables → the operand of co_await
● Awaiters → specific way to implement an awaitable

● Is another configuration point
● Used whenever co_await and co_yield is called

 57

Awaiter

● 3 methods
– await_ready()
– await_suspend(awaitHandle)
– await_resume()

 58

await_ready

● Called immediately before the coroutine is
suspended

● Allows as such, for some reason, to decide not to
suspend after all

● Returns true → coroutine is NOT suspended
● Typically : return false;
● Use case : suspension depends on some data

availability

 59

await_suspend(awaitHandle)

● Called immediately after the coroutine is suspended
● Parameter : the handle of the coroutine that was

suspended
● What to do next ? Again we could neutralize the

suspension if we want. We could even destroy the
coroutine …

 60

auto await_resume()

● Called when the coroutine is resumed (after a
successful suspension)

● Can return a value
– The value the co_await expression yields

 61

2 Awaiters we know

● std::suspend_always
– await_ready returns false

● std::suspend_never
– await_ready returns true

● The 2 other methods are empty, and await_resume
returns void

● Aka both do nothing at suspension and resumption

 62

Application : coroutines calling
coroutines
● See later

 63

Application : passing values from
suspension back to co-routine
● When the co-routine yields us a value at suspension

time, we would like from the caller side, pass in a
value ourselves for the next resumption cycle

● Example:
– When we get the song in our RadioStation
– We will provide a score of our appreciation of this song

when requesting(resuming) the next song

 64

Mechanisms we already know

● Passing values between the 2 sides => promise_type
– So new member in the promise_type
– In the API a method for the user to pass in this value

● The implementation will then store it in the promise_type

● How does the co-routine get’s it out of the
promise_type ?
– Return value of co_yield call
– Custom Awaiter

● Let’s inspect these 1 by 1

 65

Api change

● Method needed to pass our
value

● Let’s call it : score(…)
● Stores it in the promise_type

void RadioStation::score(int scoreIn)

{

 mHandle.promise().score = scoreIn;

}

 66

Api change

● Calling it int main()

{

 auto radio = radioStation(0, 7);

 while (radio.nextSong())

 {

 std::cout << radio.value() << std::endl;

 radio.score(10);

 }

 return 0;

}

 67

promise_type change

● Member needed
● Different yield_value

(see later)

struct RadioStation::promise_type

{

…

 std::string value;

 int score{};

};

 68

Co-routine method

● Get’s the value as return value
of the co_yield call

 for (int i = 0; i < songs; ++i)

 {

 const int score = co_yield(style ? electronic[track(rng)] : rap[track(rng)]);

 std::cout << "The previous track scored " << score << std::endl;

 }

 69

promise_type change

● We used to return the Awaiter
std::suspend_always

● Now we return an instance of our home made Awaiter
(template parameter will be explained shortly)

 auto yield_value(const std::string& valueIn)

 {

 value = valueIn;

 return MyAwaiter<CoroHandle>{};

 }

 70

Awaiter : remember

● await_resume can return a value
– The value the co_await expression yields

● So that means in this case our score
– Which is stored in the promise_type
– Accessible via the handle

● Let’s assume the handle is a member of our Awaiter,
we will see later how it ended up in there

 71

Awaiter

template <typename Handle>
struct MyAwaiter
{
 Handle hdl{nullptr};

 bool await_ready() const noexcept
 {
 return false;
 }

/// 1 method missing, see later

 auto await_resume() const noexcept
 {
 return hdl.promise().score;
 }
}

 72

Awaiter : remember

● await_suspend receives as argument the handle of
the co-routine
– So it can store it
– And await_resume can use it

 73

Awaiter

template <typename Handle>
struct MyAwaiter
{
 Handle hdl{nullptr};

 bool await_ready() const noexcept
 {
 return false;
 }

 void await_suspend(Handle hdlIn) noexcept
 {
 hdl = hdlIn;
 }

 auto await_resume() const noexcept
 {
 return hdl.promise().score;
 }
};

 74

Coro call coro

● Say outer coroutine suspends at certain points
● Somewhere it calls another coroutine

– We want the inner suspensions to be like it were
suspensions of the outer

●

...

coroInner()

...
/// this does not work !

 75

Coro call coro

● We need to explicitly LOOP

CoroTask coroOuter()

{

 std::cout << "\t\t coroutine Outer started, calling the inner one" << "\n";

 auto sub = coroInner(3);

 while (sub.resume())

 {

 std::cout << " Outer(): coroInner() suspended\n";

 }

 std::cout << "\t\t outer done with aling the inner, time to suspend outer\n";

 co_await std::suspend_always{}; // SUSPEND

 std::cout << "\t\t outer done\n";

}

 76

Coro call coro : Awaitable

● Have the API/Object of the calling coroutine be an
Awaitable
– This allows : co_await coroInner(3)

● With some more boilerplate the suspend/resume of the
inner will be to the outside world as if they were from the
outer one

● Remember:
 bool resume() const
 {
 if (!mHandle || mHandle.done())
 {
 return false; // we are done
 }
 mHandle.resume(); /// <==
 return !mHandle.done();
 }

 77

Coro call coro : Awaitable

● What if ?
– We would resume the handle from the inner one, from within the

resume method of the outer
– Requires:

● Outer knowing there is an inner handle
● Checking if inner done or not, if not, resume that handle, if done, resume

own (outer) handle

– Assume we were able to store that handle in the promise_type (of
the Outer) : mSub

 78

Coro call coro : Awaitable

 bool resume() const
 {
 if (!mHandle || mHandle.done())
 {
 return false;
 }

 CoroHandle handle{mHandle};
 while(handle.promise().mSub &&
 ! handle.promise().mSub.done())
 {
 handle = handle.promise().mSub;
 }

 handle.resume();

 return !mHandle.done();
 }

 79

Coro call coro : Awaitable

● How to get that sub handle in the promise_type of the Outer ?
● Remember Inner is an Awaitable (handle : mHandle)

– void await_suspend(auto awaitHdl)
● This means that “co_await coroInner(3);” :

– Will call the Awaiter (Inner coroutine object)
– Passing in the handle of the coroutine that got suspended (handle

of Outer)
● Inner now knows the handle of Outer
● Fetch the promise from it
● Store it’s own handle in it

 80

Coro call coro : Awaitable

void await_suspend(auto awaitHdl)
{
 awaitHdl.promise().mSub = mHandle;
}

 81

co_await (expression) : more

● Can be an expression resulting in any type (say Foo)
● Requires either:

– The promise_type has a method: auto await_transform(Foo x)
– Foo has : auto operator co_await()

● Both scenarios need to return a real Awaiter

 co_await 242;

 co_await Foo{};

 82

await_suspend : return type

● There can be 3 different return types
– void
– bool
– handle

 83

await_suspend : return void

● We can do some extra stuff
● Suspension remains in place

 84

await_suspend : return bool

● We can do some extra stuff
● Suspension remains in place when true is returned,

cancelled when false is returned

 85

await_suspend : return coroutine
handle
● We can do some extra stuff
● The handle of this (other) coroutine is resumed
● Symmetric transfer
● std::noop_coroutine() is case no other coroutine handle

to return
● CONTINUATION

 86

Some day : std::future::then

● std::async → std::future
● When the async is done ‘then’ do the next thing:

– Callable passed to myFuture.then(...)
● CONTINUATION

 87

Boost asio : completion handler

● When the async operation is finished, the completion
handler (token) is executed

● CONTINUATION

 boost::asio::async_read(

 client->mSocket,

 boost::asio::dynamic_buffer(client->mReadBuffer),

 std::bind(completionCondition, std::ref(client->mReadBuffer),
std::placeholders::_1, std::placeholders::_2),

 std::bind(&Server::readHandler, this, client, std::placeholders::_1,
std::placeholders::_2));

 88

Continuation

● Idea:
– CoroOuter calls coroInner
– When inner is ‘finished’, outer should continue, aka outer is

the continuation of inner
● When inner finished
● Then continue with outer

 89

Continuation

● How:
– An Awaiter with await_suspend returning the handle of outer
– An Awaiter to be invoked from inner, at the ‘appropriate time’

● When it is finishing
– ==> auto final_suspend()

 90

Teaser : boost::asio and
coroutines

boost::asio::awaitable<void> echo(
 boost::asio::ip::tcp::socket peer_socket,
 boost::asio::ip::tcp::acceptor acceptor)
{
 std::array<char, 1000> buf;

 for (;;)
 {
 co_await acceptor.async_accept(peer_socket, boost::asio::use_awaitable);

 for (;;)
 {
 const auto [error, len] = co_await peer_socket.async_read_some(
 boost::asio::buffer(buf),
 boost::asio::as_tuple(boost::asio::use_awaitable));
 if (error == boost::asio::error::eof)
 {
 break;
 }

 co_await async_write(
 peer_socket,
 boost::asio::buffer(buf, len),
 boost::asio::use_awaitable);
 }
 peer_socket.close();
 }
}

boost::asio::io_context ctx;

boost::asio::ip::tcp::socket socket{ctx};

boost::asio::ip::tcp::acceptor acceptor{ctx,

boost::asio::ip::tcp::endpoint{boost::asio::ip::tcp::v4(),
6666}};

boost::asio::co_spawn(

 ctx,

 echo(std::move(socket), std::move(acceptor)),

 boost::asio::detached);

ctx.run();

 91

QUESTIONS

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91

