

CMAKE

Lieven de Cock
www.codeblocks.org

Literature

Literature

Cmake is NOT

● A build system
● No it is not !!!

Cmake is

● A build system GENERATOR

CMake : several stages

● Configuration
● Generation
● Building
● Testing (CTest)
● Reporting (CDash)
● Install
● Packaging (CPack)
● Package Install

Configuration

● Done by the developer
● Via CMakeLists.txt files
● What to build
● How to build
● Done while invoking CMake
● Targets : executables, libraries, custom targets

Generation

● Done while invoking CMake, after successful
 configuration stage

● Generates the Build System
● Many Generators (-G option)

– Makefiles
– Ninja
– Visual Studio Workspaces/Solutions
– Code::Blocks Workspaces/Projects
– ...

Building

● Invoke the native build tools
● Or via ‘cmake --build’, a platform independent build invoke

wrapper

Languages

● C
● C++ (CXX)
● Fortran
● …
●

● Variables per language: CMAKE_<LANG>_…
● Eg. : CMAKE_CXX_COMPILER, CMAKE_CXX_FLAGS

Build Types: CMAKE_BUILD_TYPE

● Debug
● Release
● RelWithDebInfo
● MinSizeRel
● Extendable : create your own

● Not specifying it => none of the above !

Modern CMake

● CMake 2.x : drop it, ditch it, …
● Don’t use variables (yourself)
● Don’t GLOB
● Usage specifications (aka how to consume)
● Out of Source builds

Out of source builds

● Source Tree
● Build system is generated in a different location outside of the

source tree → binary directory, build directory, binary tree, build
tree, ...

● No ignores for git/svn/… needed
● Source tree remains clean
● Entire Source tree directory structure is mimicked in the binary

directory
● Multiple binary trees can exist for 1 source tree

(Debug/Release/cross compilation/...)

Let’s roll : always required

● Minimal cmake version we require
● Minimum 1 project definition (can just be something at the

top of our source tree), specify which languages are
supported (by default ; C, CXX)

cmake_minimum_required(VERSION 3.20)

project (MyLittleProject)

Build the source tree

● Add the next level, aka subdirectories through the
CMakeLists.txt of their parent directory

● ParentDir
– Subdir1
– Subdir2

add_subdirectory(Subdir1)

add_subdirectory(Subdir2)

Executable

● No dependencies
● Source files (cpp and h)
● No need to enumerate headers
● add_executable

add_executable(CMakeExe1NoDeps

 ./src/main.cpp

 ./src/foo.cpp

 ./src/bar.cpp

)

Usage Specifications

● How do YOU use ME ?
● How do I use MYSELF ?
● How do YOU use ME, and I do NOT use MYSELF ?
● Applies to:

– Include paths
– Compile definitions
– Compile options
– (Linker) dependencies

Usage Specifications

● (only) YOU ===> INTERFACE
● (only) ME ===> PRIVATE
● YOU AND ME ===> PUBLIC

(Static) Library : no dependencies

● Own (internal) headers
● Exported headers
● Users need to know (at minimum) the include path
● DRY : you do NOT want to specify this for every user
● User should just say, I will use (depend on) that library

(Static) Library

● add_library
● target_include_directories
● ${CMAKE_CURRENT_LIST_DIR}

add_library(Library1NoDeps STATIC

 ./src/foo.cpp

 ./src/bar.cpp

)

target_include_directories(Library1NoDeps

 PUBLIC ${CMAKE_CURRENT_LIST_DIR}/include)

Executable using our library

● ==> dependency on our library
● Recompile when included headers change
● Link with library
● Relink, when implementation of library changes
● And first recompile the library when it changes

Executable using our library

● Just specify that we depend (PRIVATE) on the library,
nothing more

● target_link_libraries

add_executable(Exectable2WithDependency
 ./src/main.cpp
 ./src/bar.cpp
)

target_link_libraries(Exectable2WithDependency
 PRIVATE Library1NoDeps
)

(Static) Library : compile
definitions
● Tinyxml
● Either std::string or its own string class
● Choice determines the API
● Done by a define : TIXML_USE_STL
● Needs to be in sync for YOU AND ME => PUBLIC
● Say we always want std::string (aka stl)
● DRY : specify once and is applied to every user of the library
● User just says : depend on Tinyxml library

(Static) Library : compile
definitions
● target_compile_definitions

add_library(tinyxml STATIC

 local/tinystr.cpp

 local/tinyxmlerror.cpp

 local/tinyxmlparser.cpp

 local/tinyxml.cpp

)

target_include_directories(tinyxml

 PUBLIC ${CMAKE_CURRENT_LIST_DIR}/include)

target_compile_definitions(tinyxml PUBLIC TIXML_USE_STL)

(Static) Library : with a (PRIVATE)
dependency

● Library depends on other library
● PRIVATE : pure implementation detail
● As such not visible via exported headers
● DRY : specify once and is applied to every user of the library
● Obviously users of our library should in the end link with the

library we are depending on (and build it first)
● And for that matter if that one depends itself on other libraries,

and so on … (CMake takes care of the dependency tree)

(Static) Library : with a (PRIVATE)
dependency
●

add_library(Library2WithDependency STATIC

 ./src/bar.cpp

)

target_include_directories(Library2WithDependency

 PUBLIC ${CMAKE_CURRENT_LIST_DIR}/export)

target_link_libraries(Library2WithDependency PRIVATE
Library1NoDeps)

Executable using our library (with
its own PRIVATE dependency)
● Just specify that we depend (PRIVATE) on the library,

nothing more
● We don’t see, nor care that the library we use has its own

dependencies

add_executable(Executable3WithDependency
 ./src/main.cpp
)

target_link_libraries(Executable3WithDependency
 PRIVATE Library2WithDependency
)

(Static) Library : with a (PUBLIC)
dependency

● Library depends on other library
● PUBLIC : visible implementation detail
● Visible via exported headers
● So when user includes our header, the compiler should not only find our header

being included, but also the headers we are including from the library we depend
on

● TRANSITIVY
● DRY : specify once and is applied to every user of the library
● Basically at the user point we do NOT want to specify the include path (or other

stuff) of that other library
● GOOD NEWS : DO NOTHING ==> cmake takes care of this, via the usage specification,

transitivity percolates up

(Static) Library : with a (PUBLIC)
dependency

● Target link libraries
● We specify we

PUBLIC depend on
the other library, aka
YOU and ME

● The YOU part is the
magic key

add_library(Library3WithPublicDependency STATIC

 ./src/bar.cpp

)

target_include_directories(Library3WithPublicDependency

 PUBLIC ${CMAKE_CURRENT_LIST_DIR}/export)

target_link_libraries(Library3WithPublicDependency PUBLIC
Library1NoDeps)

Executable using our library (with
its own PUBLIC dependency)
● Just specify that we depend (PRIVATE) on the library,

nothing more
● We don’t see, nor care that the library we use has its own

dependencies (public nor private, though public affects us)

add_executable(Executable4WithDependency
 ./src/main.cpp
)

target_link_libraries(Executable4WithDependency
 PRIVATE Library3WithDependency
)

HEADER ONLY (INTERFACE)
Library
● Library can still depend on other libraries
● Library can have compile definitions, compile options , ….
● There are no source files
● Only exported headers
● So no ME in the build story, only YOU ===> INTERFACE
● From users perspective, just like any other library, who cares about its

special nature
● Examples:

– Library with type declarations/definitions
– Template library

HEADER ONLY (INTERFACE)
Library
● ...

add_library(HeaderOnlyLibrary INTERFACE)

target_include_directories(HeaderOnlyLibrary
INTERFACE $
{CMAKE_CURRENT_LIST_DIR}/include)

Some target : compile options

● target_compile_options
● Eg for warnings suppression or other compiler options

target_compile_options(SomeTarget PUBLIC "-Wno-unused-parameter" "-Wno-
sign-compare")

Using 3rd party libraries

● We need to get them in our source tree
● 2 ways
● 1) FetchContent

– For cmake based (and good behaving)
● 2) ExternalProject

– Non cmake based
– Cmake based but bad behaving

● Retrieve from internet (tar/zip/git/svn/…) or retrieve locally
● In the examples that follow we retrieve locally (aka we downloaded upfront and

added the tar/zip manually in our repository)
● Extracted sources end up in the BINARY/BUILD directory
● Patches can be applied

GOOD behaving cmake

● Be reusable
● Be humble (serve but not rule)
● Don’t decide on language version or other compiler options

(at best on your target)
● No global variables or manipulations
● Avoid to use findpackage

FetchContent

● Example : fmt library
● We will get the target (and others) : fmt::fmt-header-only
● That is an (namespaced) ALIAS for some internal name we

would like to avoid to use and don’t care about
include(FetchContent)

FetchContent_Declare(fmt
 URL file://${CMAKE_CURRENT_LIST_DIR}/fmt-8.1.1.tar.gz
)

FetchContent_MakeAvailable(fmt)

Executable using fmt

● Use it just like any other library (but we use the alias)

add_executable(ExecutableUsingFmt
 ./src/main.cpp
)

target_link_libraries(ExecutableUsingFmt
 PRIVATE fmt::fmt-header-only
)

ALIAS Library

● New scoped name for an existing target
● Target must have been found during configuration step in

the source tree
● Is interpreted as a target, not just a library name

target_link_libraries(SomeOtherTarget
 PRIVATE Target1 #===> if no target builds this or exists it will be assumed to be the
name of a library for the linker to use (and to be found by it)

 PRIVATE Foo::Target2 #target not found => configuration error
)

ALIAS Library : avoid name
conflicts
● When you provide libraries and other targets for

consumption by others, use the following convention
● Say our library would be called ‘Foo’
● Target : Foo_Foo (the real internal name)
● Alias : Foo::Foo (the name for the user)

ExternalProject_Add

● Example : libxml2 library
● Need to wrap an other build system
● Need to pass flags accordingly
● Powerful but can be complex
● We will create an INTERFACE library wrapping the

outcome and making it consumable by regular CMake
targets

ExternalProject_Add

● Example below contains some stuff from our way to allow cross compilation

include(ExternalProject)

include(ProcessorCount)
ProcessorCount(NPROCS)

ExternalProject_Add(libxml2_EP
 URL file://${CMAKE_CURRENT_LIST_DIR}/libxml2-2.9.0.tar.gz
 CONFIGURE_COMMAND PATH=${TOOLCHAIN_LOC}:$(PATH) <SOURCE_DIR>/configure --prefix=$
{CMAKE_CURRENT_BINARY_DIR} --without-python --without-zlib --without-lzma --libdir=${CMAKE_CURRENT_BINARY_DIR}/lib
$<$<BOOL:${TOOLCHAIN}>:--host=${TOOLCHAIN}> CFLAGS=-O2
 BUILD_COMMAND PATH=${TOOLCHAIN_LOC}:$(PATH) make -j${NPROCS}
 INSTALL_COMMAND PATH=${TOOLCHAIN_LOC}:$(PATH) make install
)

add_library(LibXml2_libxml2 INTERFACE)
target_include_directories(LibXml2_libxml2 INTERFACE ${CMAKE_CURRENT_BINARY_DIR}/include/libxml2)
target_link_libraries(LibXml2_libxml2 INTERFACE ${CMAKE_CURRENT_BINARY_DIR}/lib/libxml2.a)

add_dependencies(LibXml2_libxml2 libxml2_EP)

add_library(LibXml2::libxml2 ALIAS LibXml2_libxml2)

Cross compilation

● Define your cross compiler
● Incorporate it BEFORE the project()

cmake_minimum_required(VERSION 3.15 FATAL_ERROR)

add_subdirectory(powerpc-e500v2-linux-gnuspe)

project(Foo)
...

Cross compilation : powerpc
example
● CMakeLists.txt → extract and variable for name of compiler

get_filename_component(TOOLCHAIN ${CMAKE_CURRENT_LIST_DIR} NAME)

include(FetchContent)

FetchContent_Declare(powerpc-e500v2-linux-gnuspe

 URL file://${CMAKE_CURRENT_LIST_DIR}/powerpc-e500v2-linux-gnuspe.tar.xz

 SOURCE_DIR ${CMAKE_BINARY_DIR}/${TOOLCHAIN}

)

FetchContent_MakeAvailable(powerpc-e500v2-linux-gnuspe)

Cross compilation : powerpc
example
● toolchain.cmake → compiler definition
● This file will be specified during command line option to

cmake invocation to generate the build system
get_filename_component(TOOLCHAIN ${CMAKE_CURRENT_LIST_DIR} NAME)

set (TOOLCHAIN_LOC ${CMAKE_CURRENT_BINARY_DIR}/${TOOLCHAIN}/bin/)

set (CMAKE_SYSTEM_NAME Linux) ######## this means to cmake we are cross compiling

set (CMAKE_C_COMPILER ${TOOLCHAIN_LOC}/${TOOLCHAIN}-gcc)

set (CMAKE_CXX_COMPILER ${TOOLCHAIN_LOC}/${TOOLCHAIN}-g++)

set (CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)

set (CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)

set (CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)

Cross compilation : powerpc
example
● CMake invocaton:
● cmake

-D CMAKE_BUILD_TYPE=Release
-D CMAKE_TOOLCHAIN_FILE=powerpc-e500v2-linux-

gnuspe/toolchain.cmake -S . -B build/powerpcRelease
● CMake 3.21 > :

--toolchain=powerpc-e500v2-linux-gnuspe/toolchain.cmake
● CMAKE_SYSROOT : path to the sysroot

ctest

● Test is typically an executable implementing some tests
● Could be a script, …
● CMake knows several test frameworks (or they know CMake)
● Can run in parallel (-j)
● We will use catch2 as an example
● We will have 3 tests (each test (executable) can contain several tests

of the testing framework)
● Test1 will pass, Test2 consists out of 2 tests and the first one will fail,

Test3 will pass, but Address Sanitizer will not like it
● include(ctest) at top level before add_subdirectory() calls

ctest

add_executable(Test1
 src/Test1.cpp
)

target_link_libraries(Test1
 PRIVATE Catch2::Catch2WithMain)

add_test(
 NAME Test1
 COMMAND $<TARGET_FILE:Test1>)

#include <catch2/catch_test_macros.hpp>

namespace
{

int sum(int a, int b)
{
 return a + b;
}

}

TEST_CASE("Test2PositiveNumbers")
{
 REQUIRE(10 == sum(7, 3));
}

TEST_CASE("Test2NegativeNumbers")
{
 REQUIRE(-10 == sum(-7, -3));
}

ctest

ctest

Custom buildtype

● Let’s create a custom build type, which will pass extra
options during compilation/linking so we activate the
Address Sanitizer

● Let’s call it “DebugWithAddressSanitizer”
● CMake invocation:

cmake -D CMAKE_BUILD_TYPE=DebugWithAddressSanitizer -S. -B
build/DebugAsan

Custom buildtype : definition

Ctest - asan

QUESTIONS

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

