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Cmake is NOT

● A build system
● No it is not !!!



  

Cmake is 

● A build system GENERATOR



  

CMake : several stages

● Configuration
● Generation
● Building
● Testing (CTest)
● Reporting (CDash)
● Install
● Packaging (CPack)
● Package Install



  

Configuration 

● Done by the developer
● Via CMakeLists.txt files
● What to build
● How to build
● Done while invoking CMake
● Targets : executables, libraries, custom targets



  

Generation 

● Done while invoking CMake, after successful
 configuration stage

● Generates the Build System
● Many Generators (-G option)

– Makefiles
– Ninja
– Visual Studio Workspaces/Solutions
– Code::Blocks Workspaces/Projects
– ...



  

Building 

● Invoke the native build tools
● Or via ‘cmake --build’, a platform independent build invoke 

wrapper



  

Languages 

● C
● C++ (CXX)
● Fortran
● …
●

● Variables per language: CMAKE_<LANG>_…
● Eg. : CMAKE_CXX_COMPILER, CMAKE_CXX_FLAGS



  

Build Types: CMAKE_BUILD_TYPE

● Debug
● Release
● RelWithDebInfo
● MinSizeRel
● Extendable : create your own

● Not specifying it => none of the above !



  

Modern CMake 

● CMake 2.x : drop it, ditch it, …
● Don’t use variables (yourself)
● Don’t GLOB
● Usage specifications (aka how to consume)
● Out of Source builds



  

Out of source builds 

● Source Tree
● Build system is generated in a different location outside of the 

source tree → binary directory, build directory, binary tree, build 
tree, ...

● No ignores for git/svn/… needed
● Source tree remains clean
● Entire Source tree directory structure is mimicked in the binary 

directory
● Multiple binary trees can exist for 1 source tree 

(Debug/Release/cross compilation/...)



  

Let’s roll : always required 

● Minimal cmake version we require
● Minimum 1 project definition (can just be something at the 

top of our source tree), specify which languages are 
supported (by default ; C, CXX)

cmake_minimum_required(VERSION 3.20)

project (MyLittleProject)



  

Build the source tree 

● Add the next level, aka subdirectories through the 
CMakeLists.txt of their parent directory

● ParentDir
– Subdir1
– Subdir2

add_subdirectory(Subdir1)

add_subdirectory(Subdir2)



  

Executable 

● No dependencies
● Source files (cpp and h)
● No need to enumerate headers
● add_executable

add_executable(CMakeExe1NoDeps

    ./src/main.cpp

    ./src/foo.cpp

    ./src/bar.cpp

)



  

Usage Specifications 

● How do YOU use ME ?
● How do I use MYSELF ?
● How do YOU use ME, and I do NOT use MYSELF ?
● Applies to:

– Include paths
– Compile definitions
– Compile options
– (Linker) dependencies



  

Usage Specifications 

● (only) YOU ===> INTERFACE
● (only) ME ===> PRIVATE
● YOU AND ME ===> PUBLIC



  

(Static) Library : no dependencies 

● Own (internal) headers
● Exported headers
● Users need to know (at minimum) the include path
● DRY : you do NOT want to specify this for every user
● User should just say, I will use (depend on) that library



  

(Static) Library

● add_library
● target_include_directories
● ${CMAKE_CURRENT_LIST_DIR}

add_library(Library1NoDeps STATIC

    ./src/foo.cpp

    ./src/bar.cpp

)

target_include_directories(Library1NoDeps 

    PUBLIC ${CMAKE_CURRENT_LIST_DIR}/include)



  

Executable using our library 

● ==> dependency on our library
● Recompile when included headers change
● Link with library
● Relink, when implementation of library changes
● And first recompile the library when it changes



  

Executable using our library

● Just specify that we depend (PRIVATE) on the library, 
nothing more

● target_link_libraries

add_executable(Exectable2WithDependency
    ./src/main.cpp
    ./src/bar.cpp
)

target_link_libraries(Exectable2WithDependency
    PRIVATE Library1NoDeps
)



  

(Static) Library : compile 
definitions
● Tinyxml
● Either std::string or its own string class
● Choice determines the API
● Done by a define : TIXML_USE_STL
● Needs to be in sync for YOU AND ME => PUBLIC
● Say we always want std::string (aka stl)
● DRY : specify once and is applied to every user of the library
● User just says : depend on Tinyxml library



  

(Static) Library : compile 
definitions
● target_compile_definitions

add_library(tinyxml STATIC

    local/tinystr.cpp

    local/tinyxmlerror.cpp

    local/tinyxmlparser.cpp

    local/tinyxml.cpp

)

target_include_directories(tinyxml 

    PUBLIC ${CMAKE_CURRENT_LIST_DIR}/include)

target_compile_definitions(tinyxml   PUBLIC TIXML_USE_STL)



  

(Static) Library : with a (PRIVATE) 
dependency

● Library depends on other library
● PRIVATE : pure implementation detail
● As such not visible via exported headers
● DRY : specify once and is applied to every user of the library
● Obviously users of our library should in the end link with the 

library we are depending on (and build it first)
● And for that matter if that one depends itself on other libraries, 

and so on …  (CMake takes care of the dependency tree)



  

(Static) Library : with a (PRIVATE) 
dependency
●

add_library(Library2WithDependency STATIC

    ./src/bar.cpp

)

target_include_directories(Library2WithDependency 

    PUBLIC ${CMAKE_CURRENT_LIST_DIR}/export)

target_link_libraries(Library2WithDependency PRIVATE 
Library1NoDeps)



  

Executable using our library (with 
its own PRIVATE dependency)
● Just specify that we depend (PRIVATE) on the library, 

nothing more
● We don’t see, nor care that the library we use has its own 

dependencies

add_executable(Executable3WithDependency
    ./src/main.cpp
)

target_link_libraries(Executable3WithDependency
    PRIVATE Library2WithDependency
)



  

(Static) Library : with a (PUBLIC) 
dependency

● Library depends on other library
● PUBLIC : visible implementation detail
● Visible via exported headers
● So when user includes our header, the compiler should not only find our header 

being included, but also the headers we are including from the library we depend 
on

● TRANSITIVY
● DRY : specify once and is applied to every user of the library
● Basically at the user point we do NOT want to specify the include path (or other 

stuff) of that other library
● GOOD NEWS : DO NOTHING ==> cmake takes care of this, via the usage specification, 

transitivity percolates up



  

(Static) Library : with a (PUBLIC) 
dependency

● Target link libraries
● We specify we 

PUBLIC depend on 
the other library, aka 
YOU and ME

● The YOU part is the 
magic key

add_library(Library3WithPublicDependency STATIC

    ./src/bar.cpp

)

target_include_directories(Library3WithPublicDependency 

    PUBLIC ${CMAKE_CURRENT_LIST_DIR}/export)

target_link_libraries(Library3WithPublicDependency PUBLIC 
Library1NoDeps)



  

Executable using our library (with 
its own PUBLIC dependency)
● Just specify that we depend (PRIVATE) on the library, 

nothing more
● We don’t see, nor care that the library we use has its own 

dependencies (public nor private, though public affects us)

add_executable(Executable4WithDependency
    ./src/main.cpp
)

target_link_libraries(Executable4WithDependency
    PRIVATE Library3WithDependency
)



  

HEADER ONLY (INTERFACE) 
Library
● Library can still depend on other libraries
● Library can have compile definitions, compile options , ….
● There are no source files
● Only exported headers
● So no ME in the build story, only YOU ===> INTERFACE
● From users perspective, just like any other library, who cares about its 

special nature
● Examples:

– Library with type declarations/definitions
– Template library



  

HEADER ONLY (INTERFACE) 
Library
● ...

add_library(HeaderOnlyLibrary INTERFACE)

target_include_directories(HeaderOnlyLibrary 
INTERFACE $
{CMAKE_CURRENT_LIST_DIR}/include)



  

Some target : compile options

● target_compile_options
● Eg for warnings suppression or other compiler options

target_compile_options(SomeTarget   PUBLIC  "-Wno-unused-parameter" "-Wno-
sign-compare")



  

Using 3rd party libraries

● We need to get them in our source tree
● 2 ways
● 1) FetchContent

– For cmake based (and good behaving)
● 2) ExternalProject

– Non cmake based
– Cmake based but bad behaving

● Retrieve from internet (tar/zip/git/svn/…) or retrieve locally
● In the examples that follow we retrieve locally (aka we downloaded  upfront and 

added the tar/zip manually in our repository)
● Extracted sources end up in the BINARY/BUILD directory
● Patches can be applied



  

GOOD behaving cmake

● Be reusable
● Be humble (serve but not rule)
● Don’t decide on language version or other compiler options 

(at best on your target)
● No global variables or manipulations
● Avoid to use findpackage



  

FetchContent

● Example : fmt library
● We will get the target (and others) : fmt::fmt-header-only
● That is an (namespaced) ALIAS for some internal name we 

would like to avoid to use and don’t care about
include(FetchContent)

FetchContent_Declare(fmt
    URL file://${CMAKE_CURRENT_LIST_DIR}/fmt-8.1.1.tar.gz
    )

FetchContent_MakeAvailable(fmt)



  

Executable using fmt

● Use it just like any other library (but we use the alias)

add_executable(ExecutableUsingFmt
    ./src/main.cpp
)

target_link_libraries(ExecutableUsingFmt
    PRIVATE fmt::fmt-header-only
)



  

ALIAS Library

● New scoped name for an existing target
● Target must have been found during configuration step in 

the source tree
● Is interpreted as a target, not just a library name

target_link_libraries(SomeOtherTarget
    PRIVATE Target1 #===> if no target builds this or exists it will be assumed to be the 
name of a library for the linker to use (and to be found by it)

    PRIVATE Foo::Target2  #target not found => configuration error
)



  

ALIAS Library : avoid name 
conflicts
● When you provide libraries and other targets for 

consumption by others, use the following convention
● Say our library would be called ‘Foo’
● Target : Foo_Foo (the real internal name)
● Alias : Foo::Foo (the name for the user)



  

ExternalProject_Add

● Example : libxml2 library
● Need to wrap an other build system
● Need to pass flags accordingly
● Powerful but can be complex
● We will create an INTERFACE library wrapping the 

outcome and making it consumable by regular CMake 
targets



  

ExternalProject_Add

● Example below contains some stuff from our way to allow cross compilation

include(ExternalProject)

include(ProcessorCount)
ProcessorCount(NPROCS)

ExternalProject_Add(libxml2_EP
    URL file://${CMAKE_CURRENT_LIST_DIR}/libxml2-2.9.0.tar.gz
    CONFIGURE_COMMAND PATH=${TOOLCHAIN_LOC}:$(PATH) <SOURCE_DIR>/configure --prefix=$
{CMAKE_CURRENT_BINARY_DIR} --without-python --without-zlib  --without-lzma --libdir=${CMAKE_CURRENT_BINARY_DIR}/lib 
$<$<BOOL:${TOOLCHAIN}>:--host=${TOOLCHAIN}> CFLAGS=-O2
    BUILD_COMMAND PATH=${TOOLCHAIN_LOC}:$(PATH) make -j${NPROCS}
    INSTALL_COMMAND PATH=${TOOLCHAIN_LOC}:$(PATH) make install
    )

add_library(LibXml2_libxml2 INTERFACE)
target_include_directories(LibXml2_libxml2 INTERFACE ${CMAKE_CURRENT_BINARY_DIR}/include/libxml2)
target_link_libraries(LibXml2_libxml2 INTERFACE ${CMAKE_CURRENT_BINARY_DIR}/lib/libxml2.a)

add_dependencies(LibXml2_libxml2 libxml2_EP)

add_library(LibXml2::libxml2 ALIAS LibXml2_libxml2)



  

Cross compilation

● Define your cross compiler
● Incorporate it BEFORE the project()

cmake_minimum_required(VERSION 3.15 FATAL_ERROR)

add_subdirectory(powerpc-e500v2-linux-gnuspe)

project(Foo)
...



  

Cross compilation : powerpc 
example
● CMakeLists.txt → extract and variable for name of compiler

get_filename_component(TOOLCHAIN ${CMAKE_CURRENT_LIST_DIR} NAME)

include(FetchContent)

FetchContent_Declare(powerpc-e500v2-linux-gnuspe

    URL file://${CMAKE_CURRENT_LIST_DIR}/powerpc-e500v2-linux-gnuspe.tar.xz

    SOURCE_DIR ${CMAKE_BINARY_DIR}/${TOOLCHAIN}

    )

FetchContent_MakeAvailable(powerpc-e500v2-linux-gnuspe)



  

Cross compilation : powerpc 
example
● toolchain.cmake → compiler definition
● This file will be specified during command line option to 

cmake invocation to generate the build system
get_filename_component(TOOLCHAIN ${CMAKE_CURRENT_LIST_DIR} NAME)

set (TOOLCHAIN_LOC ${CMAKE_CURRENT_BINARY_DIR}/${TOOLCHAIN}/bin/)

set (CMAKE_SYSTEM_NAME Linux)  ######## this means to cmake we are cross compiling

set (CMAKE_C_COMPILER   ${TOOLCHAIN_LOC}/${TOOLCHAIN}-gcc)

set (CMAKE_CXX_COMPILER ${TOOLCHAIN_LOC}/${TOOLCHAIN}-g++)

set (CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)

set (CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)

set (CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)



  

Cross compilation : powerpc 
example
● CMake invocaton:
● cmake 

-D CMAKE_BUILD_TYPE=Release
-D CMAKE_TOOLCHAIN_FILE=powerpc-e500v2-linux-

gnuspe/toolchain.cmake -S . -B build/powerpcRelease
● CMake 3.21 > : 

--toolchain=powerpc-e500v2-linux-gnuspe/toolchain.cmake
● CMAKE_SYSROOT : path to the sysroot



  

ctest

● Test is typically an executable implementing some tests
● Could be a script, …
● CMake knows several test frameworks (or they know CMake)
● Can run in parallel (-j)
● We will use catch2 as an example
● We will have 3 tests (each test (executable) can contain several tests 

of the testing framework) 
● Test1 will pass, Test2 consists out of 2 tests and the first one will fail, 

Test3 will pass, but Address Sanitizer will not like it
● include(ctest) at top level before add_subdirectory() calls



  

ctest

add_executable(Test1
    src/Test1.cpp
)

target_link_libraries(Test1 
    PRIVATE Catch2::Catch2WithMain)

add_test(
    NAME Test1
    COMMAND $<TARGET_FILE:Test1>)

#include <catch2/catch_test_macros.hpp>

namespace
{

int sum(int a, int b)
{
    return a + b;
}

}

TEST_CASE("Test2PositiveNumbers")
{
    REQUIRE(10 == sum(7, 3));
}

TEST_CASE("Test2NegativeNumbers")
{
    REQUIRE(-10 == sum(-7, -3));
}



  

ctest



  

ctest



  

Custom buildtype

● Let’s create a custom build type, which will pass extra 
options during compilation/linking so we activate the 
Address Sanitizer 

● Let’s call it “DebugWithAddressSanitizer”
● CMake invocation:

cmake -D CMAKE_BUILD_TYPE=DebugWithAddressSanitizer -S. -B 
build/DebugAsan



  

Custom buildtype : definition



  

Ctest - asan



  

QUESTIONS
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