
Threads are evil

Parallelism meets programming reality



Next slides contain content which may be shocking 



Northeast blackout
widespread power outage 
throughout U.S. and Canada 
affecting 55 million people

August, 14th 2003
World’s second biggest 
power outage

Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec

S
ou

rc
e:

 W
ik

ip
ed

ia

A race condition occurred in General Electric Energy's Unix-based energy 
management system. Once triggered, the bug stalled FirstEnergy's control room 
alarm system for over an hour. System operators were unaware of the malfunction. 
The failure deprived them of both audio and visual alerts for important changes in 
system state.

Unprocessed events queued up the primary and backup server. The server failures 
slowed the screen refresh rate of the operators' consoles from 1–3 seconds to 59 
seconds per screen. The lack of alarms prevented operators control a simple failure 
which led to the world’s second biggest power outage.

https://en.wikipedia.org/wiki/Northeast_blackout_of_2003


What ?

What is a thread? 

A thread is a programming primitive. It is the 
smallest sequence of programmed 
instructions that can be managed 
independently by the scheduler of the OS.

All memory within the process is shared 
across the threads.

Sections that need to be executed 
sequentially need to be protected with a 
mutex, ...



The problem:
Uncareful programming leads to unpredictable behavior 
and hard to reproduce bugs.



Non-atomic data needs to be protected
with mutexes, semaphores, RW-locks, ...

● Hard for programmers to reach watertight functionality
● Bugs do not show up that easy

○ Eg Heisenbug

● Little support from tools to reveal concurrency issues
● Mutexes, semaphores, … are expensive to use.



Alternatives

Futures and promises

Offloads method into separate thread. Sends a 
signal when finished.

Implemented by a thread. Securing shared data 
access is still required.

Uses threadpool: cheaper to construct

Multi-process

Split algorithm into separate process which can 
be monitored.

To interact with process:

● IPC required
● Cmd line or parsable output is required.



What have we learned?

Mutexes Atomic types Futures and 
promises

Single threaded 
apps

OS primitive Supported by many CPU 
architectures

Alternative for apps with 
event loop.

Easy to program, easy 
to maintain.

Thread is sleeping while 
waiting

Cheaper to use than 
mutex

Be aware of concurrent 
data access.

Requires IPC to 
feedback results or 
interact

Related to semaphores 
which have less 
overhead

Be aware of memory 
re-ordering

Supported by std, Qt, 
boost

Preferred by Google’s 
and Apple’s coding 
guidelines



What have we learned?

Mutexes Atomic types Futures and 
promises

Single threaded 
apps

OS primitive Supported by many CPU 
architectures

Alternative for apps with 
event loop.

Easy to program, easy 
to maintain.

Thread is sleeping while 
waiting

Cheaper to use than 
mutex

Be aware of concurrent 
data access.

Requires IPC to 
feedback results or 
interact

Related to semaphores 
which have less 
overhead

Be aware of memory 
re-ordering

Supported by std, Qt, 
boost

Preferred by Google’s 
and Apple’s coding 
guidelines



What have we learned?

Mutexes Atomic types Futures and 
promises

Single threaded 
apps

OS primitive Supported by many CPU 
architectures

Alternative for apps with 
event loop.

Easy to program, easy 
to maintain.

Thread is sleeping while 
waiting

Cheaper to use than 
mutex

Be aware of concurrent 
data access.

Requires IPC to 
feedback results or 
interact

Related to semaphores 
which have less 
overhead

Be aware of memory 
re-ordering

Supported by std, Qt, 
boost

Preferred by Google’s 
and Apple’s coding 
guidelines



What have we learned?

Mutexes Atomic types Futures and 
promises

Single threaded 
apps

OS primitive Supported by many CPU 
architectures

Alternative for apps with 
event loop.

Easy to program, easy 
to maintain.

Thread is sleeping while 
waiting

Cheaper to use than 
mutex

Be aware of concurrent 
data access.

Requires IPC to 
feedback results or 
interact

Related to semaphores 
which have less 
overhead

Be aware of memory 
re-ordering

Supported by std, Qt, 
boost

Preferred by Google’s 
and Apple’s coding 
guidelines



What have we learned?

Mutexes Atomic types Futures and 
promises

Single threaded 
apps

OS primitive Supported by many CPU 
architectures

Alternative for apps with 
event loop.

Easy to program, easy 
to maintain.

Thread is sleeping while 
waiting

Cheaper to use than 
mutex

Be aware of concurrent 
data access.

Requires IPC to 
feedback results or 
interact

Related to semaphores 
which have less 
overhead

Be aware of memory 
re-ordering

Supported by std, Qt, 
boost

Preferred by Google’s 
and Apple’s coding 
guidelines



Benchmark

Demo app calculating prime numbers 
and adding results to a list during 30 
seconds

Code on https://github.com/frederikvannoote/becpp

List

Prime 
number 

calculator

Prime 
number 

calculator

Prime 
number 

calculator



Benchmark

Demo app calculating prime numbers 
and adding results to a list during 30 
seconds



The conclusion

Mutexes are expensive 
and error prone.

Atomics are cheaper

Multi-process avoids 
sharing data all together 
and gives best 
performance, but require 
IPC.



More

Advanced threading libraries:

● Threadweaver
● Grand Central Dispatch

Apple coding guidelines:

● https://developer.apple.com/library/content/documentation/Cocoa/Conc
eptual/Multithreading/AboutThreads/AboutThreads.html


